Testing performance of Tensorflow’s fixed-point-quantization on x86_64 cpu

Google has published their quantization method on this paper. It use int8 to run feed-forward but float32 for back-propagation, since back-propagation need more accurate to accumulate gradients. I got a question right after reading the paper: why all the performance test works are on platform of mobile-phone (ARM architecture)? The quantization consequences of model in google’s method doesn’t only need addition and multiplication of int8 numbers, but also bit-shift operations. The AVX instruments set in Intel x86_64 architecture could accelerate MAC (Multiplication, Addition and aCcumulation), but couldn’t boost bit-shift operations.

To verify my suspicion, I wrote a model with ResNet-50 (float32) to classify CIFAR-100 dataset. After running a few epochs, I evaluate the speed of inference by using my ‘eval.py’. The result is:

Then, I follow these steps to add tf.contrib.quantize.create_training_graph() and tf.contrib.quantize.create_eval_graph() into my code. This time, the speed of inference is:

A little bit of disappointment. Using quantized (int8) version of model could not accelerate processing speed of x86 CPU. May be we need to find other more powerful quantization algorithm.