Some tips about Tensorflow

Q: How to fix error report like

A: We can’t feed a value into a variable and optimize it in the same time (So the problem only occurs when using Optimizers). Should using ‘tf.assign()’ in graph to give value to tf.Variable

Q: How to get a tensor by name?

A: like this:

Q: How to get variable by name?

A:

How to average gradients in Tensorflow

Sometimes, we need to average an array of gradients in deep learning model. Fortunately, Tensorflow divided models into fine-grained tensors and operations, therefore it’s not difficult to implement gradients average by using it.

Let’s see the code from github

We should keep in mind that these codes will only build a static graph (the ‘grads; are references rather than values).

First, we need to expand dimensions of tensor(gradient) and concatenate them. Then use reduce_mean() to do actually average operation (seems not intuitive).

A basic example of using Tensorflow to regress

In theory of Deep Learning, even a network with single hidden layer could represent any function of mathematics. To verify it, I write a Tensorflow example as below:

In this code, it was trying to regress to a number from its own sine-value and cosine-value.
At first running, the loss didn’t change at all. After I changed learning rate from 1e-3 to 1e-5, the loss slowly went down as normal. I think this is why someone call Deep Learning a “Black Magic” in Machine Learning area.

Fix Resnet-101 model in example of MXNET

SSD(Single Shot MultiBox Detector) is the fastest method in object-detection task (Another detector YOLO, is a little bit slower than SSD). In the source code of MXNET,there is an example for SSD implementation. I test it by using different models: inceptionv3, resnet-50, resnet-101 etc. and find a weird phenomenon: the size .params file generated by resnet-101 is smaller than resnet-50.

Model Size of .params file
resnet-50 119MB
resnet-101 69MB

Since deeper network have larger number of parameters, resnet-101 has smaller file size for parameters seems suspicious.

Reviewing the code of example/ssd/symbol/symbol_factory.py:

Why resnet-50 and resnet-101 has the same ‘from_layers’ ? Let’s check these two models:




In resnet-50, the SSD use two layers (as show in red line) to extract features. One from output of stage-3, another from output of stage-4. In resnet-101, it should be the same (as show in blue line), but it incorrectly copy the config code of resnet-50. The correct ‘from_layers’ for resnet-100 is:

This seems like a bug, so I create a pull request to try fixing it.

“Eager Mode” in Tensorflow

Although Tensorflow is the most popular Deep Learning Framework in 2016, Pytorch, a smaller new framework developed by FAIR(Facebook AI Research), become a dark horse this year. Pytorch supports Dynamic Graph Computing, which means you can freely add or remove layers in your model at runtime. It makes developer or scientist build new models more rapidly.
To fight back Pytorch, Tensorflow team add a new mechanism named “Eager Mode”, in which we could also use Dynamic Graph Computing. The example of “Eager Mode” looks like:

As above, unlike traditional Tensorflow application that use “Session.run()” to execute whole graph, developers could see values and gradients of variables in any layer at any step.

How did Tensorflow do it? Actually, the tricks behind the API is not difficult. Take the most common Operation ‘matmul’ as example:

Le’t look into “gen_math_ops._mat_mul()”:

As we can see, in Graph Mode, it will go to “_apply_op_helper()” to build graph (but not running it). In Eager Mode, it will execute the Operation directly.

Training DNN with less memory cost

The paper “Training Deep Nets with Sublinear Memory Cost” tells us a practical method to train DNN with far less memory cost. The mechanism behind is not difficult to understand: when training a deep network (a computing graph), we have to store temporary data in every node, which will occupy extra memory. Actually, we could remove these temporary data after computing each node, and compute them again in back-propagation period. It’s a tradeoff between computing time and computing space.

The author give us an example in MXNET. The improvement of memory-reducing seems tremendous.

Above the version 1.3, tensorflow also brought a similar module: memory optimizer. We can use it like this:

Still need to add op in Resnet:

By using this method, we could increase batch-size even in deep network (Resnet-101 etc.) now.

The performance of R-CNN in mxnet

We are trying to use faster R-CNN network (also is an example in mxnet) to automatically extract bird from pictures. But it will cost 10 seconds to recognize a bird from a picture by using CPU, which is too slow to be used in product environment. To improve the performance, I download the MKL with version-2017u4 from Intel site and install it in the server. After recompile mxnet:

it only cost 3~4 seconds to recognize bird from picture. MKL really works!

Using GPU to do inference is a another option. But a EC2 instance with a GPU device is much more expensive than a normal EC2 instance. So we will still using CPU in the near future.

Price of EC2 instance in US-West(Oregon)

vCPU ECU Memory (GiB) Instance Storage (GB) Linux/UNIX Usage
t2.large 2 Variable 8 EBS Only $0.0928 per Hour
g2.2xlarge 8 26 15 60 SSD $0.65 per Hour

Use Mxnet To Classify Images Of Birds (Fourth Episode)

More than half a year past since previous article. In this period, Alan Mei (my old ex-colleague) collected more than 1 million pictures of Chinese Avians. And after Alexnet, VGG19, I finally chose Resnet-18 as my DNN model to classify different kinds of Chinese birds. Resnet-18 model has far less parameters of network than VGG19, but still get enough capability of representation.

Collecting more than 1 million sample pictures of birds and label them (some by program, and some by hand) is really a tedious work. I really appreciate Alan Mei for accepting so hard a job, although he said he is a Avian fans :). And I also need to thank him for giving me a Personal Computer with GTX970 GPU. Without this GPU, I would not train my model so fast.

To make the accuracy of classifying better, I have read the book “Deep Learning” and many other papers (Not only Resnet-paper, of course). The reward of knowledge about machine learning and deep learning is abundant for me. But the most important of all is: I enjoyed the learning of new technology again.

Today, we launch this simple web: http://en.dongniao.net/ . In Chinese language, “dongniao” means “Understanding Avians”. Hope the Avian-Fans and Depp Learning Fans will love it.



Using Spark-SQL to transfer CSV file to Parquet

After downloading data from “Food and Agriculture Organization of United Nations”, I get many CSV files. One of the file is named “Trade_Crops_Livestock_E_All_Data_(Normalized).csv” and it looks like:

To load this CSV file into Spark and dump it to Parquet format, I wrote these codes:

The build.sbt is

Always remember to add dependency for “spark-sql” or else it will report “createDataFrame() if not a member of spark”.
And finally, the submit script is:

Importance of function’s return Type in Scala

The Scala code is below:

But the output of this section of code is:

Nothing, just a pair of parenthesis. What happen? Why doesn’t Scala use the ‘call’ function in subclass ‘Student’?
The answer is: we forget to define the return Type of function ‘call’, so its default return Type is ‘Unit’. The value of ‘Unit’ is only ‘()’. Hence no matter what value we give to ‘call’, it only return ‘()’.
We just to add return Type:

It print “robin” now.